lunes, 15 de abril de 2013
Rele Programable
Controlador lógico programable
Un controlador lógico programable, más conocido por sus siglas en inglés PLC (Programmable Logic Controller), es una computadora utilizada en la ingeniería automática o automatización industrial, para automatizar procesos electromecánicos, tales como el control de la maquinaria de la fábrica en líneas de montaje o atracciones mecánicas.
Los PLCs son utilizados en muchas industrias y máquinas. A diferencia de las computadoras de propósito general, el PLC está diseñado para múltiples señales de entrada y de salida, rangos de temperatura ampliados, inmunidad al ruido eléctrico y resistencia a la vibración y al impacto. Los programas para el control de funcionamiento de la máquina se suelen almacenar en baterías copia de seguridad o en memorias no volátiles. Un PLC es un ejemplo de un sistema de tiempo real duro donde los resultados de salida deben ser producidos en respuesta a las condiciones de entrada dentro de un tiempo limitado, que de lo contrario no producirá el resultado deseado.1
Historia
Su historia se remonta a finales de la década de 1960, cuando la industria buscó en las nuevas tecnologías electrónicas una solución más eficiente para reemplazar los sistemas de control basados en circuitos eléctricos con relés, interruptores y otros componentes comúnmente utilizados para el control de los sistemas de lógica combinacional.
En un rack UR2 de 9 ranuras, de izquierda a derecha: fuente de alimentación PS407 4A, CPU 416-3, módulo de interfaz IM 460-0 y procesador de comunicaciones CP 443-1.
En 1968 GM Hydramatic (la división de transmisión automática de General Motors) emitió una solicitud de propuestas para un reemplazo electrónico de los sistemas cableados de relés. La propuesta ganadora vino de Bedford Associates. El resultado fue el primer PLC, designado 084 porque era el proyecto de Bedford Associates nº 84.2 Bedford Associates comenzó una nueva empresa dedicada al desarrollo, fabricación, venta y mantenimiento de este nuevo producto: Modicon (MOdular DIgital CONtroler). Una de las personas que trabajaron en ese proyecto fue Dick Morley, quien es considerado como el "padre" del PLC.3 La marca Modicon fue vendida en 1977 a Gould Electronics, y posteriormente adquirida por la compañía alemana AEG y luego por la francesa Schneider Electric, el actual propietario
FuncionesLa funcion básica y primordial del PLC ha evolucionado con los años para incluir el control del relé secuencial, control de movimiento, control de procesos, Sistemas de Control Distribuido y comunicación por red. Las capacidades de manipulación, almacenamiento, potencia de procesamiento y de comunicación de algunos PLCs modernos son aproximadamente equivalentes a las computadoras de escritorio. Un enlace-PLC programado combinado con hardware de E/S remoto, permite utilizar un ordenador de sobremesa de uso general para suplantar algunos PLC en algunas aplicaciones. En cuanto a la viabilidad de estos controladores de ordenadores de sobremesa basados en lógica, es importante tener en cuenta que no se han aceptado generalmente en la industria pesada debido a que los ordenadores de sobremesa ejecutan sistemas operativos menos estables que los PLCs, y porque el hardware del ordenador de escritorio está típicamente no diseñado a los mismos niveles de tolerancia a la temperatura, humedad, vibraciones, y la longevidad como los procesadores utilizados en los PLC. Además de las limitaciones de hardware de lógica basada en escritorio; sistemas operativos tales como Windows no se prestan a la ejecución de la lógica determinista, con el resultado de que la lógica no siempre puede responder a los cambios en el estado de la lógica o de los estado de entrada con la consistencia extrema en el tiempo como se espera de los PLCs. Sin embargo, este tipo de aplicaciones de escritorio lógicos encuentran uso en situaciones menos críticas, como la automatización de laboratorio y su uso en instalaciones pequeñas en las que la aplicación es menos exigente y crítica, ya que por lo general son mucho menos costosos que los PLCs.
[editar]Relé Lógico Programable (PLR)
En los últimos años, unos productos pequeños llamados PLRs (relés lógicos programables), y también por otros nombres similares, se han vuelto más comunes y aceptados. Estos son muy similares a los PLC, y se utilizan en la industria ligera, donde sólo unos pocos puntos de E/S (es decir, unas pocas señales que llegan desde el mundo real y algunas que salen) están involucrados, y el bajo costo es deseado. Estos pequeños dispositivos se hacen típicamente en un tamaño físico y forma común por varios fabricantes, y con la marca de los fabricantes más grandes de PLCs para completar su gama baja de producto final. La mayoría de ellos tienen entre 8 y 12 entradas digitales, 4 y 8 salidas discretas, y hasta 2 entradas analógicas. El tamaño es por lo general alrededor de 10 cm de ancho y 7,5 cm de alto y 7,5 cm de profundidad. La mayoría de estos dispositivos incluyen una pantalla LCD de tamaño pequeño para la visualización simplificada lógica de escalera (sólo una porción muy pequeña del programa está visible en un momento dado) y el estado de de los puntos de E/S. Normalmente estas pantallas están acompañados por una botonera basculante de cuatro posiciones más cuatro pulsadores más separados, y se usan para navegar y editar la lógica. La mayoría tienen un pequeño conector para la conexión a través de RS-232 o RS-485 a un ordenador personal para que los programadores pueden utilizar simples aplicaciones de Windows para la programación en lugar de verse obligados a utilizar la pantalla LCD y el conjunto de pequeños pulsadores para este fin. A diferencia de los PLCs regulares que son generalmente modulares y ampliables en gran medida, los PLRs son por lo general no modulares o expansibles, pero su precio puede ser dos órdenes de magnitud menos de un PLC y todavía ofrecen un diseño robusto y de ejecución determinista de la lógica.
Neumatica e hidraulica
Neumática
La neumática (del griego πνεῦμα "aire") es la tecnología que emplea el aire comprimido como modo de transmisión de la energía necesaria para mover y hacer funcionar mecanismos. El aire es un material elástico y, por tanto, al aplicarle una fuerza se comprime, mantiene esta compresión y devuelve la energía acumulada cuando se le permite expandirse, según dicta la
Mandos neumáticos
Los mandos neumáticos están constituidos por elementos de señalización, elementos de mando y un aporte de trabajo. Los elementos de señalización y mando modulan las fases de trabajo de los elementos de trabajo y se denominan válvulas. Los sistemas neumáticos e hidráulicos están constituidos por:
Elementos de información.
Órganos de mando.
Elementos de trabajo.
Elementos artísticos.
Para el tratamiento de la información de mando es preciso emplear aparatos que controlen y dirijan el fluido de forma preestablecida, lo que obliga a disponer de una serie de elementos que efectúen las funciones deseadas relativas al control y dirección del flujo del aire comprimido.
En los principios de la automatización, los elementos rediseñados se mandan manual o mecánicamente. Cuando por necesidades de trabajo se precisaba efectuar el mando a distancia, se utilizan elementos de comando por símbolo neumático (cuervo).
Actualmente, además de los mandos manuales para la actuación de estos elementos, se emplean para el comando procedimientos servo-neumáticos, electro-neumáticos y automáticos que efectúan en su totalidad el tratamiento de la información y de la amplificación de señales.
La gran evolución de la neumática y la hidráulica han hecho, a su vez, evolucionar los procesos para el tratamiento y amplificación de señales, y por tanto, hoy en día se dispone de una gama muy extensa de válvulas y distribuidores que nos permiten elegir el sistema que mejor se adapte a las necesidades.
Hay veces que el comando se realiza manualmente, y otras nos obliga a recurrir a la electricidad (para automatizar) por razones diversas, sobre todo cuando las distancias son importantes y no existen circunstancias adversas.
Las válvulas en términos generales, tienen las siguientes misiones:
Distribuir el fluido
Regular caudal
Regular presión
Las válvulas son elementos que mandan o regulan la puesta en marcha, el paro y la dirección, así como la presión o el caudal del fluido enviado por el compresor o almacenado en un depósito. Ésta es la definición de la norma DIN/ISO 1219 conforme a una recomendación del CETOP (Comité Européen des Transmissions Oléohydrauliques et Pneumatiques).
Según su función las válvulas se subdividen en 5 grupos:
Válvulas de vías o distribuidoras
Válvulas de bloqueo
Válvulas de presión
Válvulas de caudal
Válvulas de cierre
Le changue mone
Comparación con otros medios
Tanto la lógica neumática como la realización de acciones con neumática tiene ventajas y desventajas sobre otros métodos (hidráulica, eléctrica, electrónica). Algunos criterios a seguir para tomar una elección son:
El medio ambiente. Si el medio es inflamable no se recomienda el empleo de equipos eléctricos y tanto la neumática como la hidráulica son una buena opción.
La precisión requerida. La lógica neumática es de todo o nada, por lo que el control es limitado. Si la aplicación requiere gran precisión son mejores otras alternativas electrónicas.
Por otro lado, hay que considerar algunos aspectos particulares de la neumática:
Requiere una fuente de aire comprimido, por lo que se ha de emplear un compresor.
Es una aplicación que no contamina por si misma al medio ambiente (caso hidráulica).
Al ser un fluido compresible absorbe parte de la energía, mucha más que la hidráulica.
La energía neumática se puede almacenar, pudiendo emplearse en caso de fallo eléctrico.
Matematicas
Las matemáticas o la matemática1 (del lat. mathematĭca, y este del gr. μαθηματικά, derivado de μάθημα, conocimiento) es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones entre entes abstractos (números, figuras geométricas, símbolos). Las matemáticas se emplean para estudiar relaciones cuantitativas, estructuras, relaciones geométricas y las magnitudes variables. Los matemáticos buscan patrones,2 3 formulan nuevas conjeturas e intentan alcanzar la verdad matemática mediante rigurosas deducciones. Éstas les permiten establecer los axiomas y las definiciones apropiados para dicho fin.4 Algunas definiciones clásicas restringen las matemáticas al razonamiento sobre cantidades,1 aunque sólo una parte de las matemáticas actuales usan números, predominando el análisis lógico de construcciones abstractas no cuantitativas.
Existe cierta discusión acerca de si los objetos matemáticos, como los números y puntos, realmente existen o simplemente provienen de la imaginación humana. El matemático Benjamin Peirce definió las matemáticas como "la ciencia que señala las conclusiones necesarias".5 Por otro lado, Albert Einstein declaró que "cuando las leyes de la matemática se refieren a la realidad, no son exactas; cuando son exactas, no se refieren a la realidad".6
Mediante la abstracción y el uso de la lógica en el razonamiento, las matemáticas han evolucionado basándose en las cuentas, el cálculo y las mediciones, junto con el estudio sistemático de la forma y el movimiento de los objetos físicos. Las matemáticas, desde sus comienzos, han tenido un fin práctico.
Las explicaciones que se apoyaban en la lógica aparecieron por primera vez con la matemática helénica, especialmente con los Elementos de Euclides. Las matemáticas siguieron desarrollándose, con continuas interrupciones, hasta que en el Renacimiento las innovaciones matemáticas interactuaron con los nuevos descubrimientos científicos. Como consecuencia, hubo una aceleración en la investigación que continúa hasta la actualidad.
Hoy en día, las matemáticas se usan en todo el mundo como una herramienta esencial en muchos campos, entre los que se encuentran las ciencias naturales, la ingeniería, la medicina y las ciencias sociales, e incluso disciplinas que, aparentemente, no están vinculadas con ella, como la música (por ejemplo, en cuestiones de resonancia armónica). Las matemáticas aplicadas, rama de las matemáticas destinada a la aplicación de los conocimientos matemáticos a otros ámbitos, inspiran y hacen uso de los nuevos descubrimientos matemáticos y, en ocasiones, conducen al desarrollo de nuevas disciplinas. Los matemáticos también participan en las matemáticas puras, sin tener en cuenta la aplicación de esta ciencia, aunque las aplicaciones prácticas de las matemáticas puras suelen ser descubiertas con el paso del tiempo.
Etimología
La palabra «matemática» (del griego μαθηματικά, «cosas que se aprenden») viene del griego antiguo μάθημα (máthēma), que quiere decir «campo de estudio o instrucción». El significado se contrapone a μουσική (musiké) «lo que se puede entender sin haber sido instruido», que refiere a poesía, retórica y campos similares, mientras que μαθηματική se refiere a las áreas del conocimiento que sólo pueden entenderse tras haber sido instruido en las mismas (astronomía, aritmética).7 Aunque el término ya era usado por los pitagóricos (matematikoi) en el siglo VI a. C., alcanzó su significado más técnico y reducido de "estudio matemático" en los tiempos de Aristóteles (siglo IV a. C.). Su adjetivo es μαθηματικός (mathēmatikós), "relacionado con el aprendizaje", lo cual, de manera similar, vino a significar "matemático". En particular, μαθηματική τέχνη (mathēmatikḗ tékhnē; en latín ars mathematica), significa "el arte matemática".
La forma más usada es el plural matemáticas, que tiene el mismo significado que el singular1 y viene de la forma latina mathematica (Cicerón), basada en el plural en griego τα μαθηματικά (ta mathēmatiká), usada por Aristóteles y que significa, a grandes rasgos, "todas las cosas matemáticas". Algunos autores, sin embargo, hacen uso de la forma singular del término; tal es el caso de Bourbaki, en el tratado Élements de mathématique (Elementos de matemática), (1940), destaca la uniformidad de este campo aportada por la visión axiomática moderna, aunque también hace uso de la forma plural como en Éléments d'histoire des mathématiques (Elementos de historia de las matemáticas) (1969), posiblemente sugiriendo que es Bourbaki quien finalmente realiza la unificación de las matemáticas.8 Así mismo, en el escrito L'Architecture des mathématiques (1948) plantea el tema en la sección "Matemáticas, singular o plural" donde defiende la unicidad conceptual de las matemáticas aunque hace uso de la forma plural en dicho escrito.9 Es importante señalar también[¿por quién?] que Bourbaki no hace referencia a una sola persona, sino que en realidad consistía de un colectivo de diferentes matemáticos escribiendo bajo un pseudónimo.
La inspiración, las matemáticas puras y aplicadas y la estética
Es muy posible que el arte del cálculo haya sido desarrollado antes incluso que la escritura,10 relacionado fundamentalmente con la contabilidad y la administración de bienes, el comercio, en la agrimensura y, posteriormente, en la astronomía.
Actualmente, todas las ciencias aportan problemas que son estudiados por matemáticos, al mismo tiempo que aparecen nuevos problemas dentro de las propias matemáticas. Por ejemplo, el físico Richard Feynman propuso la integral de caminos como fundamento de la mecánica cuántica, combinando el razonamiento matemático y el enfoque de la física, pero todavía no se ha logrado una definición plenamente satisfactoria en términos matemáticos. Similarmente, la teoría de las cuerdas, una teoría científica en desarrollo que trata de unificar las cuatro fuerzas fundamentales de la física, sigue inspirando a las más modernas matemáticas.11
Algunas matemáticas solo son relevantes en el área en la que estaban inspiradas y son aplicadas para otros problemas en ese campo. Sin embargo, a menudo las matemáticas inspiradas en un área concreta resultan útiles en muchos ámbitos, y se incluyen dentro de los conceptos matemáticos generales aceptados. El notable hecho de que incluso la matemática más pura habitualmente tiene aplicaciones prácticas es lo que Eugene Wigner ha definido como «la irrazonable eficacia de las matemáticas en las Ciencias Naturales».12
Como en la mayoría de las áreas de estudio, la explosión de los conocimientos en la era científica ha llevado a la especialización de las matemáticas. Hay una importante distinción entre las matemáticas puras y las matemáticas aplicadas. La mayoría de los matemáticos que se dedican a la investigación se centran únicamente en una de estas áreas y, a veces, la elección se realiza cuando comienzan su licenciatura. Varias áreas de las matemáticas aplicadas se han fusionado con otras áreas tradicionalmente fuera de las matemáticas y se han convertido en disciplinas independientes, como pueden ser la estadística, la investigación de operaciones o la informática.
Aquellos que sienten predilección por las matemáticas, consideran que prevalece un aspecto estético que define a la mayoría de las matemáticas. Muchos matemáticos hablan de la elegancia de la matemática, su intrínseca estética y su belleza interna. En general, uno de sus aspectos más valorados es la simplicidad. Hay belleza en una simple y contundente demostración, como la demostración de Euclides de la existencia de infinitos números primos, y en un elegante análisis numérico que acelera el cálculo, así como en la transformada rápida de Fourier. G. H. Hardy en A Mathematician's Apology (Apología de un matemático) expresó la convicción de que estas consideraciones estéticas son, en sí mismas, suficientes para justificar el estudio de las matemáticas puras.13 Los matemáticos con frecuencia se esfuerzan por encontrar demostraciones de los teoremas que son especialmente elegantes, el excéntrico matemático Paul Erdős se refiere a este hecho como la búsqueda de pruebas de "El Libro" en el que Dios ha escrito sus demostraciones favoritas.14 15 La popularidad de la matemática recreativa es otra señal que nos indica el placer que produce resolver las preguntas matemáticas.
Plc
Controlador lógico programable
Un controlador lógico programable, más conocido por sus siglas en inglés PLC (Programmable Logic Controller), es una computadora utilizada en la ingeniería automática o automatización industrial, para automatizar procesos electromecánicos, tales como el control de la maquinaria de la fábrica en líneas de montaje o atracciones mecánicas.
Los PLCs son utilizados en muchas industrias y máquinas. A diferencia de las computadoras de propósito general, el PLC está diseñado para múltiples señales de entrada y de salida, rangos de temperatura ampliados, inmunidad al ruido eléctrico y resistencia a la vibración y al impacto. Los programas para el control de funcionamiento de la máquina se suelen almacenar en baterías copia de seguridad o en memorias no volátiles. Un PLC es un ejemplo de un sistema de tiempo real duro donde los resultados de salida deben ser producidos en respuesta a las condiciones de entrada dentro de un tiempo limitado, que de lo contrario no producirá el resultado deseado.1
Historia
Su historia se remonta a finales de la década de 1960, cuando la industria buscó en las nuevas tecnologías electrónicas una solución más eficiente para reemplazar los sistemas de control basados en circuitos eléctricos con relés, interruptores y otros componentes comúnmente utilizados para el control de los sistemas de lógica combinacional.
En un rack UR2 de 9 ranuras, de izquierda a derecha: fuente de alimentación PS407 4A, CPU 416-3, módulo de interfaz IM 460-0 y procesador de comunicaciones CP 443-1.
En 1968 GM Hydramatic (la división de transmisión automática de General Motors) emitió una solicitud de propuestas para un reemplazo electrónico de los sistemas cableados de relés. La propuesta ganadora vino de Bedford Associates. El resultado fue el primer PLC, designado 084 porque era el proyecto de Bedford Associates nº 84.2 Bedford Associates comenzó una nueva empresa dedicada al desarrollo, fabricación, venta y mantenimiento de este nuevo producto: Modicon (MOdular DIgital CONtroler). Una de las personas que trabajaron en ese proyecto fue Dick Morley, quien es considerado como el "padre" del PLC.3 La marca Modicon fue vendida en 1977 a Gould Electronics, y posteriormente adquirida por la compañía alemana AEG y luego por la francesa Schneider Electric, el actual propietario
Desarrollo
Los primeros PLC fueron diseñados para reemplazar los sistemas de relés lógicos. Estos PLC fueron programados en "Lenguaje Ladder", que se parece mucho a un diagrama esquemático de la lógica de relés. Este sistema fue elegido para reducir las demandas de formación de los técnicos existentes. Otros autómatas primarios utilizaron un formulario de listas de instrucciones de programación.Los PLCs modernos pueden ser programados de diversas maneras, desde la lógica de escalera de relés, a los lenguajes de programación tales como dialectos especialmente adaptados de BASIC y C. Otro método es la lógica de estado, un lenguaje de programación de alto nivel diseñado para programar PLCs basados en diagramas de estado
Funciones
La funcion básica y primordial del PLC ha evolucionado con los años para incluir el control del relé secuencial, control de movimiento, control de procesos, Sistemas de Control Distribuido y comunicación por red. Las capacidades de manipulación, almacenamiento, potencia de procesamiento y de comunicación de algunos PLCs modernos son aproximadamente equivalentes a las computadoras de escritorio. Un enlace-PLC programado combinado con hardware de E/S remoto, permite utilizar un ordenador de sobremesa de uso general para suplantar algunos PLC en algunas aplicaciones. En cuanto a la viabilidad de estos controladores de ordenadores de sobremesa basados en lógica, es importante tener en cuenta que no se han aceptado generalmente en la industria pesada debido a que los ordenadores de sobremesa ejecutan sistemas operativos menos estables que los PLCs, y porque el hardware del ordenador de escritorio está típicamente no diseñado a los mismos niveles de tolerancia a la temperatura, humedad, vibraciones, y la longevidad como los procesadores utilizados en los PLC. Además de las limitaciones de hardware de lógica basada en escritorio; sistemas operativos tales como Windows no se prestan a la ejecución de la lógica determinista, con el resultado de que la lógica no siempre puede responder a los cambios en el estado de la lógica o de los estado de entrada con la consistencia extrema en el tiempo como se espera de los PLCs. Sin embargo, este tipo de aplicaciones de escritorio lógicos encuentran uso en situaciones menos críticas, como la automatización de laboratorio y su uso en instalaciones pequeñas en las que la aplicación es menos exigente y crítica, ya que por lo general son mucho menos costosos que los PLCs.
[editar]Relé Lógico Programable (PLR)
En los últimos años, unos productos pequeños llamados PLRs (relés lógicos programables), y también por otros nombres similares, se han vuelto más comunes y aceptados. Estos son muy similares a los PLC, y se utilizan en la industria ligera, donde sólo unos pocos puntos de E/S (es decir, unas pocas señales que llegan desde el mundo real y algunas que salen) están involucrados, y el bajo costo es deseado. Estos pequeños dispositivos se hacen típicamente en un tamaño físico y forma común por varios fabricantes, y con la marca de los fabricantes más grandes de PLCs para completar su gama baja de producto final. La mayoría de ellos tienen entre 8 y 12 entradas digitales, 4 y 8 salidas discretas, y hasta 2 entradas analógicas. El tamaño es por lo general alrededor de 10 cm de ancho y 7,5 cm de alto y 7,5 cm de profundidad. La mayoría de estos dispositivos incluyen una pantalla LCD de tamaño pequeño para la visualización simplificada lógica de escalera (sólo una porción muy pequeña del programa está visible en un momento dado) y el estado de de los puntos de E/S. Normalmente estas pantallas están acompañados por una botonera basculante de cuatro posiciones más cuatro pulsadores más separados, y se usan para navegar y editar la lógica. La mayoría tienen un pequeño conector para la conexión a través de RS-232 o RS-485 a un ordenador personal para que los programadores pueden utilizar simples aplicaciones de Windows para la programación en lugar de verse obligados a utilizar la pantalla LCD y el conjunto de pequeños pulsadores para este fin. A diferencia de los PLCs regulares que son generalmente modulares y ampliables en gran medida, los PLRs son por lo general no modulares o expansibles, pero su precio puede ser dos órdenes de magnitud menos de un PLC y todavía ofrecen un diseño robusto y de ejecución determinista de la
Suscribirse a:
Entradas (Atom)